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Orthogonality



Orthogonal Sets
Definition
o A setof vectors {ay, ...,ax} in R™ is orthogonal set if each pair of
distinct vectors is orthogonal (mutually orthogonal vectors).

A basis B of an inner product space V is called an orthonormal basis of V if
a) (vyw)=0forallv+wE€B, and (mutual orthogonality)
b) ||lv|]| =1 forallv €B. (normalization)

set of n—vectors ay, ..., ay are (mutually) orthogonal if a; 1 a; for i # j
They are normalized if ||a;|| = 1 fori =1, ...,k

They are orthonormal if both hold

L OO0 O

L 1 i =]
Can be expressed using inner products as alTaj = {0 i ij’



Orthogonal Sets
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Two vectors u and v in R™ are orthogonal (to each other) ifu-v = 0.

Suppose I/ is an inner product space.

Two vectors v,w € V are called orthogonal if (v,w) = 0.

The Pythagorean Theorem

Two vectors u and v are orthogonal if and only if ||u + v||? = ||u]|? + ||v]|?



Orthogonal Sets

Example

U Zero vector is orthogonal to every vector in vector space V
L The standard basis of R™ or C" is an orthogonal set with respect to the
standard inner product.



Orthogonal Sets

Theorem

If S ={a4,...,a;} is an orthogonal set of nonzero vectors in R™, then S is
linearly independent and is a basis for the subspace spanned by S.

Proof
If k = n, then prove that S is a basis for R™



Linear combinations of orthonormal
vectors

Corollary

L A simple way to check if an n—vector y is a linear combination of the
orthonormal vectors aq, ..., ai, if and only if:

= (a{y)a; + .. + (a£Y)ak
Q For orthogonal vectors aq, -, A

y == C1a1 + .-+ Ckak

i =
J - A
a;.a;



Orthonormal vectors

Theorem

If S ={a4,...,a;} is an orthogonal set of nonzero vectors in R™, then S is
linearly independent and is a basis for the subspace spanned by S.

Proof
If k = n, then prove that S is a basis for R™



Orthonormal vectors

Theorem

Independence—dimension inequality

If the n—vectors a4, ..., a; are linearly independent, then k<n.

Orthonormal sets of vectors are linearly independent
By independence-dimension inequality, must have k < n
d  Whenk =n,a,,...,a, are an orthonormal basis



Example

0 Standard unit n-vectors ey, .., e,

O The 3-vectors
0 — |1
—1 V2 0

[ The 2-vectors shown below

1[1
il

QO The standard basis in P,(x) [-1,1] (be the set of real-valued
polynomials of degree at most n.)



Linear combinations of orthonormal
vectors

Example

Write x as a linear combination of a4, a,, az?

x=|2|, a; =10} a, =—=|1|, a3 =—=|—1
3 —1 ﬁO vz 0
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Orthogonal
Subspaces



Definition

U Two subspaces W, and W, of the same space V are orthogonal, denoted by
W, L W,, if and only if each vector w; € W, is orthogonal to each vector
w, € W, for all wy,w, in W;, W, respectively:

<w,wy, >=0

Example

If the bases of two subspaces are orthogonal, it implies that the subspaces
themselves are orthogonal.
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Orthogonal
Complements




Definition

L If a vector z is orthogonal to every vector in a subspace W of R", then z is
said to be orthogonal to W.

L The set of all vectors z that are orthogonal to W is called the orthogonal
complement of W and is denoted by W+

P
Example N W
W be a plane through the origin in R3. 0<

Z
L=W'and W = L* L




Orthogonal Complements

Theorem

W+ is a subspace of R™.

Theorem
winw ={0}.

Important

We emphasize that W; and W, can be orthogonal without being complements.
W; = span((1,0,0)) and W, = span((0,1,0)).
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Gram-Schmidt
Algorithm



Gram-Schmidt (orthogonalization)
algorithm

Find orthonormal basis for span {ay, a,, ..., a;}
aj
d Geometruy: @
&IV gl%

o ¢
q%(rﬂam] L
q2 =



Gram-Schmidt (orthogonalization)
algorithm

O Find orthonormal basis for span {a4, a,, ..., a;}
O Algebra:

1) ql =%

llall

2)q; = a; — (QIaz)Q1 =>4z = ”Zﬁ
3)qz =az — (Q1Ta3)¢h - (QZTa3)QZ (43 = ”Zﬁ

K) @k = ax — (ChTak)Ch — (q?i_lak)qk_l - (qk= #Z”



Gram-Schmidt (orthogonalization)
algorithm

Example

1 1 2
Find orthogonal set fora = |0]|,b =10],c=|1

1 0 0



Gram-Schmidt (orthogonalization)
algorithm

d  Why {q1,92,..-,qx} is a orthonormal basis for span {ay, a,, ..., a;}?
o {q1,92, -,q,}y are normalized.

o {q1,9z -,qr}ris a rthogonal set
o a;is alinear compination of {q4, 92, ---, q; }

SpOn{ql, qz, -, qk} = Spon{al, az, .., ak}

gq; is alinear combination of {ay, a,, ..., a;}



Gram-Schmidt (orthogonalization)
algorithm

Given n-vectors ay, ...,a, fori =1, ..,k
1. Orthogonalization: §; = a; — (1 a;)q1 — -+ — (91-1a:)qi—1
2. Test for linear dependence:if q; = 0, quit

qi

il

» If G-S does not stop early (in step 2), a, ..., a, are linearly independent.

3. Normalization: q; =

* If G-S stops early in iteration i = j, then a; is a linear combination of ay, ..., aj_1 (so ay, ..., a; are
linearly dependent)
_ (T T
a; = (fh aj)Ch + et (CIj—1aj)Qj—1



Complexity of Gram-Schmidt
algorithm

O Gram-Schmidt algorithm gives us an explicit method for determining if a list of vectors is linearly
dependent or independent.

L What is complexity and number of flops for this algorithm?

o  0(nk?) why?
L Given n-vectors ay, ...,a fori=1, ...,k

1. Orthogonalization: §; = a; — (T a;))qy — - — (q{-1@i)qi-1
2. Test for linear dependence: if g; = 0, quit

qi

3. Normalization: gq; = T
l



Complexity of the Gram-Schmidt algorithm. We now derive an operation count
for the Gram—Schmidt algorithm. In the first step of iteration 7 of the algorithm,
i — 1 inner products

q?ai: ey q,?;lai

between vectors of length n are computed. This takes (i — 1)(2n — 1) flops. We
then use these inner products as the coefficients in 7 — 1 scalar multiplications with
the vectors ¢y, ...,q;—1. This requires n(i — 1) flops. We then subtract the i — 1

resulting vectors from a;, which requires another n(:—1) flops. The total flop count
for step 1 is

(t=1)2n—-1)+n(i-1)+n(i—-1)=4n—-1)(i—1)

flops. In step 3 we compute the norm of ¢;, which takes approximately 2n flops.
We then divide ¢; by its norm, which requires n scalar divisions. So the total flop
count for the ith iteration is (4n — 1)(i — 1) + 3n flops.

The total flop count for all % iterations of the algorithm is obtained by summing
our counts for i = 1,...., k:

k

k(kE—1
D ((4n—1)(i — 1) +3n) = (4n — 1)% + 3nk = 2nk?,
i=1
where we use the fact that
k
k(k—1
Z(i—l):1+2+---+(L:—2)+(k—1):¥‘ (5.7)
i=1

which we justify below. The complexity of the Gram-Schmidt algorithm is 2nk?;
its order is nk?. We can guess that its running time grows linearly with the lengths



Orthonormal basis

Corollary

Every finite—dimensional inner product space has an orthonormal
basis.



Conclusion

Existence of Orthonormal Bases

[ Every finite—dimensional inner product space has an orthonormal basis.

[ Since finite—dimensional inner product spaces (by definition) have a basis
consisting of finitely many vectors, and the Gram—Schmidt process tells us
how to convert that basis into an orthonormal basis, we now know that

every finite—dimensional inner product space has an orthonormal basis.
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